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1 Introduction 

 

1.1 Summary 

 

This version of the Task Planning and Representation document presents the work accom-

plished in WP26 towards designing and implementing an algorithmic solution for the SINTEF 

co-worker robot (WP41), working in a gas and oil plant (more details shown in D41.20). This 

report introduces the task planning/replanning and learning solutions, and the real scenario 

as use case, proposing a tailored approach that aims at improving the level of autonomy of 

the robot, and its task performing under unknown events. 

1.2 Purpose of document  

 

The aim of this technical report is to represent the developed guidelines and algorithms for 

planning/replanning, learning and reasoning in the particular robotic environment. The real 

scenario with use cases, robot features and requirements, the environment, are described 

from the point of view of a concrete real problem, and the solutions are defined accordingly 

to a prototype implementation that is described in this document.   

All the work described is totally aligned with the work shown in D26.12, in which the general 

architecture of the solution is proposed. The details about the integration of the work pre-

sented here are explained under Section 3.  

The present document starts with task planning, definition and uses, as well as a short re-

view of the relevant algorithms and related topics on the field. The task planning presented in 

this proposal consists of two separated algorithms (as Figure 1 shows); the first one is the 

task selection and the second is the router. The combination of both starts with a list of tasks, 

assigns them to different robots under cost and time constraints, and later establishes the 

sequence of actions to be executed and the optimal path for each of the robots. Additionally, 

the modification of the algorithm for a single robot is provided. Accordingly, Section 4.3.1 and 

Section 4.3.2 introduce the relevant aspects of the related algorithms and approach followed 

in order to justify its election among the state of the art. Additionally, as the reasoning and 

learning process is accomplished once the task planning is executed, this concept and relat-

ed algorithms is later explained in Section 5. 

Once the scope of the WP and the selected algorithms are properly introduced and justified, 

the real scenario is detailed in Section 6, in which the robot co-worker, the environment and 

knowledge database are introduced. 
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Figure 1: General scheme  

Finally, two use cases are presented in which the first one is focused on planning and re-

planning. Section 6.4.1 explains the algorithms implemented for such purpose. However, in 

order to test them in a real situation, the general algorithm created for multiple robot optimi-

zations has been adapted to a single robot scenario (WP41-UC-3 Co-worker). Hence, the 

output of WP26 regarding planning and replanning is twofold; the first one is a simulated 

scenario demo in which multiple robots accomplish missions and trace optimal routes under 

cost and time restrictions; the second is a single real-based use case implemented in SIN-

TEF for planning. In order to allow realistic conditions of the real use case to occur, some 

triggers have been included so as to 1) make planning necessary; 2) more complex scenario 

and; 3) force replanning.  

The second use case is explained in Section 6.4.2, in which a simulated environment is pre-

sented in order to enhance the potential of the proposed reasoning algorithms in a more 

complex scenario.  

1.3 Partners involved 

 

Partners and Contribution 

Short Name Contribution 

SINTEF Environment, use cases  

BME D26.12 background, mayor revisions 

TRI Algorithms: planner, triggers, storyboards, inspection, learning and reasoning. 

Table 1: Partnersô contribution 
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2 Objectives of D26.30 

 

Along this document, the four main blocks of the work developed in WP26 are going to be 

described in different levels of detail. These four basics are the following: 1) the robot or ro-

bot co-worker; 2) the environment; 3) the use cases, and; 4) the algorithms. In previous de-

liverables D26.11 and D26.12 when describing the general architecture and later a more fo-

cused version of it, the capabilities of the robot co-worker and also the requirements have 

been largely described. For that reason, in this document we are just going to mention the 

requirements and abilities that are finally included and taken into account into the use cases 

that are going to be implemented. We understand that the reasons behind this selection are 

already explained in the architecture definition of this use cases in D26.30. These capabilities 

and restrictions are very important because constrain the use cases and hence, the algo-

rithms to be utilized. Apart from the limitations introduced by the capabilities and restrictions 

of the robot (pre-defined), also in the real environment, some events are going to be includ-

ed.  

The second important agent in this process is the environment, which is the laboratory from 

SINTEF. As it has been established in D26.12, the use cases, in our point of view, is definite-

ly complicated but not overly complicated, which makes it possible to solve the problem fully. 

Regarding the environment is not heavy in obstacles (but adverse weather conditions can 

build up obstacles: water pools, snow mounds), dynamic obstacles are only solely humans, 

or human driven vehicles, who can partly adapt to the presence of the robot. For that reason, 

in order to achieve the level of uncertainty of the use cases, some parts are predefined and 

stored in the database from the beginning. Those features, as the missions, the inspection 

points and available sensors for example, are modelled in the scenario and introduced to the 

database.   

When defining the use cases, the robot co-worker and the environment are involved in a se-

quence of tasks and triggers that activate the planning and reasoning algorithms. The use 

cases will be described from the point of view of the algorithms and the interaction with the 

environment and the CRF. For that purpose, the triggers (unexpected events) that will be in-

cluded in the project will be detailed in a lower level than they have already been explained 

up to this point. 

Finally, the learning and task planning algorithms will be introduced. It is important to re-

mark that these modules are tailored for this problem at hand, and they are an important part 

of the architecture defined in D26.12. Concretely, the algorithms are members of the Mission 

Control Module (MCM), a key part of the Planning and Reasoning Architecture.  

This adaptation to the problem starts from the data acquisition, encoding of the solutions, da-

ta set creation, training and implementation of the algorithms and testing the results. The en-

tire process and the rationale behind the decisions made in the definition will be explained in 

this technical document.   
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3 Integration with the Planning and Reasoning Architec-

ture 

The document D26.12 is framed within the architecture of the robot co-worker at three differ-

ent levels, as it is shown in Figure 2. 

¶ Remote Operator Center (ROpC) 

¶ Operator Center (OpC):  

¶ On-board robot co-worker robot system (robot co-worker) 

 

 

Figure 2: The rough view of the distributed information system of the robot co-worker 

Concretely, it is mainly focused on the On-board robot co-worker robot system (robot co-
worker) modules described in Figure 3. 

3. Shaded area in Figure 3 is the Planning and Reasoning Architecture. 

 

Figure 3: The software architecture of the Co-worker robot co-worker. 
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The black boxes highlight those modules which are the focus of the work carried out in 

D26.30: 

- The Mission Control Module (MCM) module is the main decision-maker, accepting 

mission goals, managing global parameters, interpreting data and events, deciding on 

storage and communication with the operator. It also manages the sub-modules Task 

Planning and replanning operations, which are explained in the Section 4, referred 

to the Selector algorithm and the Router algorithm. 

These two modules are especially relevant for the functioning of the robot co-worker 

considering that they select those tasks that will be part of the final mission and the 

order of the tasks to carry out. In the first stage, the Selector algorithm selects from 

the whole list of possible tasks those which the robot co-worker is able to perform, 

considering the constraints associated at that moment. In the second stage, the 

Router algorithm acts as a navigation scheduler (from a Traveling Salesman Prob-

lem, TSP approach) by deciding the order of inspection of the facilities. So, the plan-

ner elaborates the plan and the router the path (order of tasks) for accomplishing 

such plan. In both cases, a set of constraints is taken into consideration for the use 

cases, just to select the final tasks to carry out and to manage the inspection order, 

such as: battery costs, order constraints, speed inspection constraints, facilities 

avoidance, distances, reachability of inspection points, etc.  

The integration of these two sub-modules is shown in Figure 4:  

 

Figure 4: Task planning algorithms for WP26 

 

- The Knowledge Database (KDB) module is the storage system which stores infor-

mation (most of it static, but some events, logs and measurements are also stored). 

Part of this data model will be used for task planning and replanning, learning, and 

use cases purposes (environment, unknown events, etc.). The data model of the 

work presented in this deliverable will be explained in the subsection 6.3. 

- The Learner module is responsible for learning from historical data and applying this 

new knowledge to future events, being as much autonomous as possible without re-

quiring the operatorôs intervention in specific situations. The details of the functioning 

of this module are described in the Sections 5.3 and 6.4.2. 
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4 Task planning 

4.1 Definition and uses 
 

Task planning for robots can be defined as the planning process of locations to visit (way-

points) and the robot actions to do (loading/dropping a load, taking video/pictures, acquiring 

information), typically over a period of time. Over the past 20 years, a large number of re-

search studies related to this field have been carried out. Some of the most recent ones are 

a thematic overview about robotics [1], or more related to the planning [2-4]. 

This paradigm can also be understood as the assignment of a set of resources to a set of 

tasks to be accomplished over a certain temporal horizon usually optimizing a performance 

measure (optimizing function) while satisfying a set of constraints. In essence, in the indus-

trial environment, it means to decide when, in which machine and with which tools and per-

sonnel each job is to be done, taking into account, for example, some cost or time re-

strictions. The next figure shows the general architecture of an integrated system. In manu-

facturing systems in practice, the planner is usually hard-coded through the configuration of 

systems like ERPs, MRPs, etc. 

 

Figure 5: Overall architecture of the integrated environment for planning 

 

In WP26, the combination of both mentioned definitions will be merged; on the one side, the 

task planner will be tackled as a multi objective optimization problem, and on the other, also 

the locations to visit (not only the order, as it can be seen in Figure 1), will be determined. 

Concretely, on the one side, the tasks will be assigned to several robots under cost and time 

optimization criteria, and on the other, the optimum sequence among different points will be 

computed. Therefore, the task planning proposal comprises a combination of a multi-

objective heuristic algorithm and a second stage to solve the classical Traveling Salesman 

Problem (TSP).  Thus, not all the tasks in the whole mission list are going to be carried out 

by the robots, mainly due to constraints related to the environment or to their capabilities. So, 

the Task Planning process in this work is divided into 2 stages: 

- Stage 1: in which the Task Selector selects from the whole list of possible tasks 

those which the robots are able to perform, considering the constraints associated at 

that moment. This will be a multi-objective optimization problem. The output is the fi-

nal list of task that will be part of the mission. 

- Stage 2: in which the Router acts as a navigation scheduler (from a TSP point of 

view) by deciding the order of inspection of the facilities. This will be a TSP problem.  
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The output is the route (sequence of waypoints) that each of the specific robots will 

follow during the lifespan of the mission. 

In both stages, a set of constraints are taken into consideration for the use cases, just to se-

lect the final tasks to carry out and to manage the inspection order, such as (in the first 

stage): battery cost of each task and robot, order constraints of the tasks, facilities avoid-

ance, reachability of inspection points, or also speed inspection constraints and distances 

between inspection points (second stage). 

 

Figure 6: Proposed scheme 

In known environments with available models, planning can be done offline. This is the case 

of our Task Planning at the beginning of the mission, where the environment is known and its 

events are expected. Solutions can be found and evaluated prior to execution. 

4.2 Relevant algorithms and topics in the field 

4.2.1 Task selection 

 

In optimization studies for planning tasks, meta-heuristics have been widely utilized as effi-

cient solvers, capable of discovering feasible, near-optimal solutions to involved problem 

formulations within reasonably short computation times [5]. These classes of approximate 

optimization algorithms have emerged as a workaround to exact (or difficult to derive) analyt-

ical approximations to the problem at hand. Over the last few decades a number of Genetic 

Algorithm (GA), Simulated Annealing (SA), and Particle Swarm Optimization (PSO) algo-

rithms have been proposed to solve flow-shop [6] and job-shop problems [7], with a clear 

dominance of genetically inspired solvers.  

As it has been previously introduced, task planning can be seen as an optimal selection 

problem if we consider that the process consists of choosing a subset of tasks from the 

whole list of possible tasks. However, this problem can also be tackled assuming that there 

are some variables that need to be optimized (multi-objective approach). But due to con-

crete constraints of the environment (battery life limits, route avoiding access lanes, opera-

tional requirements, reachability of the inspection points, etc.) or due to the capabilities of the 

robot co-worker, not all of them can be performed. 

For nontrivial multi-objective optimization problems, a single solution that simultaneously op-

timizes each objective does not exist. In that case, the objective functions are said to be con-

flicting, and there exists a (possibly infinite) number of Pareto optimal solutions. The goal 

may be to find a representative set of Pareto optimal solutions, and/or quantify the trade-offs 
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in satisfying the different objectives, and/or finding a single solution that satisfies the subjec-

tive preferences of an operator who is in charge of the mission. 

One of the most used and well-known approaches dealing with multi-objective optimization 

problems is the evolutionary computation. The term evolutionary algorithm (EA) stands for 

a class of stochastic optimization methods that simulate the process of natural evolution. The 

origins of EAs can be traced back to the late 1950s, and since the 1970s several evolution-

ary methodologies have been proposed, mainly genetic algorithms, evolutionary program-

ming, and evolution strategies [8]. All of these approaches operate on a set of candidate so-

lutions. Using strong simplifications, this set is subsequently modified by two basic principles: 

selection and variation. While selection mimics the competition for reproduction and re-

sources among living beings, the other principle, variation, imitates the natural capability of 

creating ònewò living beings by means of recombination and mutation. Although the underly-

ing mechanisms are simple, these algorithms have proven themselves as a general, robust 

and powerful search mechanism. In particular, they possess several characteristics that are 

desirable for problems involving 1) multiple conflicting objectives, and 2) intractably large and 

highly complex search spaces. As a result, numerous algorithmic variants have been pro-

posed and applied to various problem domains since the mid-1980s. The rapidly growing in-

terest in the area of multi-objective evolutionary algorithms is reflected by, e.g., a conference 

series (Proceedings of the First International Conference on Evolutionary Multi-Criterion Op-

timization -EMO 2001-) and two recent books dedicated to this subject [9,10]. 

Generating the Pareto set (a subset of the set of feasible points of solutions that contains all 

points that have at least one objective optimized while holding all other objectives constant) 

can be computationally expensive and is often unfeasible, because the complexity of the un-

derlying application prevents exact methods from being applicable. For this reason, a num-

ber of stochastic search strategies such as evolutionary algorithms, Tabu Search [11], Simu-

lated Annealing [12], Harmony Search [13], and Ant Colony Optimization [14] have been 

developed: they usually do not guarantee to identify optimal trade-offs but try to find a good 

approximation, i.e., a set of solutions whose objective vectors are (hopefully) not too far away 

from the optimal objective vectors. A modified version of HS algorithm will be utilized in 

WP26 for the planning algorithm, as it will be explained in the Section 4.2.1.2.  

4.2.1.1 Multi-objective optimization 

 

As it has been introduced, task selection planning problems can also be tackled assuming 

that there are multiple variables that need to be optimized (multi-objective approach). In this 

particular case, as it will be thoughtfully detailed in the following sections, the variables to be 

optimized that will produce feasible missions, will be time and cost optimization based.  

Multi-objective optimization, also called multi-criteria optimization, can be defined as the 

problem of finding a vector of decision variables which satisfies constraints and optimizes a 

vector function whose elements represent the objective functions. These functions form a 

mathematical description of performance criteria which are usually conflict with each other. 

Hence, the term ñoptimizeò means finding such a solution which would give the values of all 

objective functions acceptable to the designer. 

Formally, a multi-objective optimization problem is defined so as to find the vector  

x = [x1,  x2, é, xn]
 T which optimizes the vector function: 

f(x) =[ f1 (x), f2 (x),é, f1 (x)]T   ,  

https://wiki.ece.cmu.edu/ddl/index.php?title=Feasible_points&action=edit&redlink=1
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where x = [x1,  x2, é, xn]
 T is the vector of decision variables that fulfills the m inequality con-

straints: 

gi(x) Ó 0  i = {1, é, m} 

and p equality constraints: 

hi(x) = 0  i = {1, é, p} 

In other words, the goal is to determine among the set of all feasible solutions that satisfies 

the constraints, the particular set x which yields the optimum values of all objective functions 

defined in equation f(x). Note that in general there is not a single point optimizing the set of 

objective functions, whereas a set of optimal solutions considered being non-dominated solu-

tions or Pareto set approximation. Therefore, the notion of ñoptimumò varies with respect to 

mono-objective approaches, which aims at achieving a unique solution that simultaneously 

meets the constraints and provides the best value for the objective function. In multi-objective 

approaches, a solution vector x is Pareto optimal if there does not exist another x, such that 

fi(x) Ò fi(x) for all i > {1, é, k} and fj(x) < fj(x) for at least one j. This definition means that x is 

Pareto optimal if there exists no feasible vector of decision variables which would decrease 

some criterion without causing a simultaneous increase in at least another criterion. The plot 

of the objective functions whose non-dominated vectors are in the Pareto optimal set is 

called the Pareto front. In next figure, a bold line is used to represent the Pareto front for a bi-

objective optimization problem, in which the minimization of both objective functions f(x) =[f1 

(x), f2 (x)] is sought. 

 

 

Figure 7: Example of a Pareto set (bold line) for a bi-objective minimization problem 

Next section delves into a detailed description of the evolutionary algorithm that is going to 

be utilized in the multi-objective optimization problem.  

4.2.1.2 Harmony Search algorithm 

 

Harmony Search (hereafter HS [13]) is a relatively new population-based metaheuristic algo-

rithm which has obtained excellent results in the field of combinatorial optimization [15, 16]. It 

mimics the behavior of a music orchestra when aiming at composing the most harmonious 

melody, as measured by aesthetic standards. When comparing the improvisation process of 

musicians with the optimization task, we can realize that each musician corresponds to a de-

cision variable; the musical instrument's pitch range refers to the alphabet of the decision 

variable; the musical harmony improvised at a certain time corresponds to a solution vector 

at a given iteration; and audience's aesthetic impression links to the objective function of fit-

ness of the optimization problem at hand [17]. 
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Just like musicians improve the melody time after time, the HS algorithm progressively en-

hances the fitness of the solution vector in an iterative fashion. The above improvisation pro-

cedure is mainly controlled by two different probabilistic operators, which are sequentially 

applied to each note so as to produce a new set of improvised harmonies or candidate solu-

tions: 

- The HMCR establishes the probability that the new value for a certain note is drawn 

uniformly from the values of this same note in all the remaining melodies. Otherwise 

(i.e. with a probability 1-HMCR), the note values are randomly chosen according to 

their alphabet. This case is commonly referred to as random consideration, as it in-

creases the diversity of the solutions towards the global optimality. 

- The PAR establishes the probability that the new value for a given note value x is ob-

tained by adding a small random amount to the existing value. A low pitch adjusting 

rate may restrict the diversification of the algorithm within a small search subspace 

and consequently, decrease the convergence rate of the overall solver. On the other 

hand, a high pitch adjusting rate may force the algorithm to unnecessarily escape 

from areas with potentially near-optimal solutions.  

 

By analyzing these parameters in detail, it can be identified how the HS algorithm balances 

diversification and intensification. Both the pitch adjusting rate and the random consideration 

parameter control the diversification factor. Section 4.3.1.1 delves into a detailed justification 

of the reasons behind choosing this algorithm among well know approaches, such as genetic 

algorithms.  

As it has been explained, each harmony generated by this algorithm along the iterative pro-

cess represents a possible solution, i.e., a decision vector, to the problem at hand; however, 

an individual is not a decision vector but rather encodes it based on an appropriate represen-

tation. The encoding of the solution vector is not part of the algorithm definition itself but it 

affects its performance as it is closely related to the dimensions of the space solution of the 

problem to be tackled. The space solution or feasible region of a problem is the set of all 

possible points of an optimization problem that satisfy the problem's constraints, i.e. the set 

of possible solutions for a certain problem. As it is obvious, the higher the space solution is, 

the more difficult gets to find the optimum solution. Much research has been done regarding 

the relation between optimal encodings combined with heuristic approaches for alleviating 

high or complex space solutions. Next section will explain in detail the proposed encoding for 

the multi-objective algorithm. 

4.2.1.3 Encoding 

 

Random Keys encoding was first proposed in [18]. Utilizing this representation the robot 

which will accomplish a task and the sequence of the operation in that specific robot are 

jointly represented by a real number. The integer part is used to identify the machine, while 

the fractional part provides the sequencing of operations in every machine. Regarding the 

decoding procedure, all notes with the same integer part are selected and sorted in increas-

ing order of their fractional part, which results in the task planning of operations for every 

machine. The resulting list of robot task planning is then assembled and fed to a discrete-

event simulator, which runs a model of the shop floor and provides the fitness or quality of 

the solution by taking into account all the robot and resources constraints. 

https://en.wikipedia.org/wiki/Constraint_(mathematics)
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Thus, the solution vector [2.35] [1.96] [2.73] [1.14] corresponds to the schedule: 

 

- Robot 1: [Job 2, Operation 4] - [Job 1, Operation 2] 

- Robot 2: [Job 1, Operation 1] - [Job 2, Operation 3] 

 

In the previous literature the Random Keys (RK) encoding has been used to represent the 

solutions of a GA that generates parametrized active task plans later improved by a local 

search procedure [19]. This same encoding procedure was also utilized and combined with 

PSO in [20], as well as in [21] for a fuzzy variant of the same problem, incorporating availabil-

ity constraints such as preventive maintenance and breakdowns. In [22] the authors propose 

a GA as the learning element in its framework to select the best decision rules to be applied 

to manufacturing systems. The framework uses an intelligent simulation module to evaluate 

the performance of the solutions proposed by the GA. Similarly, in [23] a computer simulation 

model is used for the minimization of the makespan in job-shop problems. The actual pro-

posed algorithm is based on a previous RK-HS based approach [24] but incorporates a mul-

tiobjective approach for obtaining an entire set of solutions. The next section details the ben-

efits and requirements of multi objective optimization.   

Once the planer or selector algorithmsô main concepts are introduced, as it can be seen in 

Figure 6, the next module is the Router. This algorithm gets as input the tasks selected for 

each robot, translates it to physical inspection points and establishes the optimal route in or-

der to accomplish the aforementioned tasks.   

4.2.2 Navigation from a TSP view 

 

Industrial robots should perform complex tasks in the minimum possible cycle time in order to 

obtain high productivity. The problem of determining the optimum route of a robot co-worker 

visiting a number of task points is similar but not identical to the well-known travelling sales-

man problem (TSP). Adapting TSP to robotics, the measure to be optimized is the time in-

stead of the distance. In optimal-time task planning, certain issues regarding the robots, such 

as the collision avoidance are considered, and also multiple robot configurations at each task 

point (city), instead of a single solution.  

In order to reduce the cycle time for the robot co-worker along the path, many optimization 

methods are presented in the literature. Addressing this concern, these authors [25] con-

structed an algorithm based on the Nearest Neighbor (NN) to obtain the near-optimal time 

path between the fruit locations for the fruit-harvesting robots. Thus, the authors did not take 

into account the possibility of collision when designing the algorithm; and also did not men-

tion about the possible configurations that were used to determine the optimal sequence. 

They [26]i succeeded in showing the potential of the elastic-net method to minimize the cycle 

time of robots. The algorithm schedules the trajectory points in such a way that gives mini-

mum time, although it is incumbent upon the fact that the energy function needs to be mini-

mized. This is achievable via the modification of a gradient method. The proposed algorithm 

is effective for a two or three degrees of freedom because of the increased computer time 

cost. However, the possibility of failure is still possible, as a much cluttered environment 

might lead to failure.  

Genetic Algorithms (GA) is one of optimization methods that retain the ability to search in 

the midst of large complex spaces [27]. Based on a genetic algorithm, in [28] they proposed 
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a method that optimizes the sequence of points that are visited by the end effector. The algo-

rithm takes into account the multiple solutions of the IK1. However, the technique utilizes a 

non-redundant manipulator in a collision free workspace. In [29], an optimization algorithm 

based on GA is introduced, with the intention of determining the near-optimal sequence of 

task points without the possibility of collision between the robot's tip and static obstacles. The 

algorithm is applicable for both categories of redundant and non-redundant (our case) robot 

and it also integrates the multiple existing solutions at each task point. 

4.3 Modules of the Metric Mission Plan: proposed algorithms 

4.3.1 Selector algorithm: a multiobjective Harmony search based heuristic approach 
with RK encoding 

4.3.1.1 Harmony search 

 

Given their strong dependency on the shape of the solution space drawn by the metric func-

tion at hand, the outperforming convergence and behavior of any meta-heuristic algorithm 

cannot be claimed in a general manner, but instead needs to be assessed by focusing on a 

certain problem, along with the side constraints that may hold in the mathematical formula-

tion at hand. Therefore, even though a globally optimal algorithm that renders the best per-

formance in all optimization schemes does not exist (in line with the statements of the so-

called No Free Lunch Theorem [30]), the HS algorithm has so far elucidated in practice a 

great potential and efficiency in comparison with other metaheuristic methods in a wide spec-

trum of real applications. HS [17] possesses a similar structure to other existing population-

based meta-heuristic solvers, but it incorporates some distinctive features that make it widely 

utilized in the literature. 

Similarly to other related population-based algorithms, i.e. Genetic Algorithms or Ant Colony 

Optimization, the HS relies on a group of solutions that can be simultaneously exploited for 

improving the efficiency of the algorithm. However, the naive Genetic Algorithm considers 

only two vectors (referred to as parents) for generating a new solution or offspring, whereas 

the original implementation of HS takes into account, component-wise and on a probabilistic 

basis, all the existing solutions (melodies) in the harmony memory. 

Nevertheless, further modifications of the naive Genetic Algorithm have been proposed in the 

literature, such as the multi-parent crossover. It modifies the original formulation of the algo-

rithm to take into account more than two individuals in the generation of the new population. 

On the contrary, the HS Algorithm, in its original version, is able to infer new solutions merg-

ing the characteristics of all individuals by simply tuning the values of its probabilistic pa-

rameters. Besides, it independently operates on each constituent variable (note) of a solution 

vector (harmony), to which stochastic operators for fine-tuning and randomization are ap-

plied. As opposed to gradient-search techniques, the convergence rate of HS and the quality 

of its produced solutions are not dramatically affected by the initialized values of the constit-

uent melodies in the harmony memory. Besides, HS utilizes a probabilistic gradient which, in 

contrast to traditional gradient-based mathematical methods, does not require the derivative 

of the fitness function to be analytically solvable, nor even differentiable over the whole solu-

                                                
1
 Inverse kinematics refers to the use of the kinematics equations of a robot to determine the joint parameters that provide a 

desired position of the end-effector.  

https://en.wikipedia.org/wiki/Kinematics
https://en.wikipedia.org/wiki/Robot_end_effector
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tion space. Instead, the probabilistic gradient converges to progressively better solutions it-

eration by iteration, since the operators driving the algorithm behavior intelligently guide the 

harmony memory to regions of the solution space with better fitness without addressing at all 

the differentiability of the metric function. As a result, HS has been shown to perform satis-

factorily in both continuous and discrete optimization problems: indeed, it is able to handle 

both decimal and binary alphabets without modifying the definition of the original HMCR and 

PAR parameters of the algorithm. 

4.3.1.2 Multiobjective approach   

 

Following this rationale, two criteria are going to be optimized. On the one side, the time of 

the operation is considered. This time is measured as the sum of time required for all the ro-

bots to execute the assigned tasks in the inspection points. Although it could seem a simple 

calculation, it is important to remark that: 1) each task does not require the same time for all 

the robots and; 2) there are plenty of tasks involved with the same inspection point but do not 

require the same resources and time. In other words, if task 1 is related to measuring a cer-

tain sensor, it is not the same that the task is accomplished by robot 1 or 2. In addition, the 

same task can be done in a fast way (a rapid measure), or a detailed measure that involves 

for example the hand of the robot to be articulated. Nevertheless, the overall cost of all the 

robots is computed and minimized.  

On the other side, the cost function is responsible of establishing the priorities between tasks 

and will determine if a certain task is relevant and hence, included in the solution. The defini-

tion of the costs for each task is a challenge that involves priorities, past events, the operator 

feedback, among others. The complete explanation of the definition is given in Section 6.4.1.  

That being so, the cost metric will work towards proposing the plan for each robot and the 

time will allow the solution to be feasible, meet battery constraints and give the operator mul-

tiple options depending on the type of inspection that wants to realize.   

4.3.1.3 RK encoding 

 

The main rationale for using this representation is that the application of the naïve HS opera-

tors to harmonies encoded by Random Keys yields feasible task planning solutions, which 

overrides the eventually increased computational load that specialized repair methods or so-

lution discarding approaches would require. In this way, the improvisation procedure of the 

algorithm will converge optimally, the solution space of the solution will not increase and the 

computational complexity of the problem will decrease.  

4.3.2 Router algorithm 

 

To understand what the traveling salesman problem (TSP) is, and why it's so problematic, 

this section will briefly go over a classic example of the problem. The problem states that 

there is a certain salesman that is given a map like the one shown in Figure 8. It can be seen 

that the map contains a total of 20 locations and the main objective gravitates on visiting 

each of the locations once to make a sell. Thus, the main idea is to set off the journey and 

plan a route by means of minimizing the travel time. Once the route is settled the next step is 

to test whether if it is really the optimal route. 
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Figure 8: TSP problem for 20 locations 

 

To understand why it is so difficult to find the optimal route we will consider a similar map 

with just 3 locations instead of the original 20. To find a single route, we first have to choose 

a starting location from the three possible locations on the map. Next, we would have a 

choice of 2 cities for the second location, and then finally there is just 1 city left to pick to 

complete our route. This would mean there are 3 x 2 x 1 different routes to pick in total. That 

means, for this example, that there are only 6 different routes to pick from. So for this case of 

just 3 locations it's reasonably trivial to calculate each of those 6 routes and find the shortest. 

Thus, the real problem is that the number of possible routes is a factorial of the number of 

locations to visit. 

Therefore, going back to the original problem, if the main purpose is to find the shortest route 

for a map of 20 locations, the space solution of the problem (the total set of possible solu-

tions) is 20! different routes. Even with modern computing power this is terribly impractical, 

and for even bigger problems, it's close to impossible. For that reason, approaches with ge-

netic algorithms are widely utilized, as they offer a cost-effective near optimal solutions.  

4.3.3 Novelty over the state of the art 

 

As it has been previously introduced, the RK encoding performs really well combined with 

the population based HS algorithm as it provides feasible solutions along the improvisation 

process, requiring less computational time and less repair methods. On the other hand, the 

multi-objective approach enriches the provided solution as it provides more than a unique 

solution to the operator and allows deciding between diverse feasible solutions. The current 

algorithm will explore the benefits of both approaches and combine the potential of the pro-

cedures.  Additionally, the RK encoding has been utilized up to now to problems in which the 

number of robots is fixed, not variable. This approach goes one step over the state of the art 

and will modify the encoding in order to allow a variable number of robots at each possible 

solution. This way, the algorithm will decide the number of robots for each mission (just in 

planning, not replanning) and will not include all of them taking into account the cost and du-

ration fitness of the solutions.  

The router algorithm is a genetic based approach that is focused on being fast, but not fur-

ther improvements over the state of the art have been implemented.  
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5 Learning and Reasoning 

5.1 Definition and robotic uses 
 

The robot hardware is progressively becoming more complex, which leads to growing inter-

est in applying machine learning and statistics approaches within the robotics community. 

At the same time, there has been a growth within the machine learning community in using 

robots as motivating applications for new algorithms and formalisms. Considerable evidence 

of this exists in the use of robot learning approaches in high-profile competitions such as Ro-

boCup2 and the DARPA3 Challenges, and the growing number of research programs funded 

by governments around the world. Additionally, the volume of research is increasing, as 

shown by the number of robot learning papers accepted to IROS and ICRA, and the corre-

sponding number of learning sessions. 

Robot learning is a research field that merges machine learning with robotics. It compris-

es a set of techniques that aim at providing novel skills to robots or devices (or better adapt-

ing to its environment) through learning algorithms. A clear example of skills that can be im-

proved by learning algorithms enclose sensorimotor skills such as locomotion, holding, object 

classification of clustering, as well as interactive skills such as joint manipulation (or coopera-

tion) of an object with a human, and linguistic skills that involve learning or interpreting the 

meaning of human language. The learning process can be accomplished either through au-

tonomous self-exploration or through guidance from a human, as it is done in robot learning 

by imitation. 

Robot learning can be closely related to adaptive control and reinforce Learning (RL), as well 

as developmental robotics which consider the problem of autonomous acquisition of reper-

toires of skills. RL can be defined as the process of learning from trial and error by exploring 

the environment and the robot status. RL also offers some additional advantages; for exam-

ple, it is possible to start from a ñgood enoughò demonstration and gradually refine it following 

a practical learning approach (similar to human being learning process). Another example, 

not focused in the environment changes, but rather related to the ability to dynamically adapt 

to changes in the agent or itself, such as a robot adapting to hardware changes (heating up, 

mechanical wear, growing body parts, among others). 

Many of the mentioned machine learning learn from information taken from past situations, 

thus, they require a set of training examples that must contain an input for the system and 

the expected answer. In many robot learning applications the desired or expected answer is 

the action for the robot to accomplish. These actions are usually not known a priori, instead 

the robot can, at best, receive a value indicating the success or failure of a given action tak-

en. Evolutionary algorithms are natural solutions to sort this type of problem framework, as 

the fitness function (that evaluates the goodness of the solution) requires only finding and 

adequate encoding that represents the success or failure of a certain controller, instead of 

the exact actions the controller should have taken. An alternative to using evolutionary com-

putation in robot learning can be q-learning, that aims at learning the fitness of any particular 

action, and then uses the predicted fitness values indirectly in order to create a controller. 

                                                
2
 http://www.robocup.org/ 

3
 http://www.darpa.mil/ 

https://en.wikipedia.org/wiki/Developmental_robotics
https://en.wikipedia.org/wiki/Q-learning
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5.2 Relevant algorithms and topics in the field 

 

Many of the existing machine learning algorithms have been applied to robotics for many dif-

ferent purposes [31], consider as examples the cases of Neural Networks [32-33], Support 

Vector Machines [34], or Bayesian techniques [35-37]. Concretely, Fuzzy Logic (FL) has 

been widely applied to robotics [38-40].  

FL is a part of artificial intelligence that follows a logic in which the decision values may be 

any real number between 0 and 1, no roughly 1 of them, i.e. it allows soft decisions instead 

of just hard decisions given by a 0 or a 1 value. Thus, analyze real-world information can be 

processed and analyzed on a scale between the false and true and therefore, concepts such 

as ñhotò or ñwarmò can be handled, allowing for example decision support systems capable of 

judging information difficult to define. 

In artificial intelligence, fuzzy logic is used to solve a wide variety of problems, mainly related 

to control of complex industrial processes and decision systems in general, resolution and 

data compression. Fuzzy logic systems are also widely used in real life devices, such as digi-

tal cameras, air conditioners, washing clothes, etc. The systems that utilize fuzzy logic, do 

not take hard decisions such as Yes or No (strictly dual values such as true / false, yes / no 

or connected / disconnected), they aim at imitating the way humans make decisions. These 

systems are generally robust and tolerant of inaccuracies and noise in the input data. 

If compared with Bayesian networks, when deciding which approach to follow, one requires 

to be more sure that the problem can be described with probabilities, if not, the lack of 

knowledge can be covered with fuzzy. 

 

5.3 Proposed approach 
 

After considering two relevant approaches of the reasoning field, the proposed algorithm for 

this work is a realistic adaptation of Fuzzy Logic to robotics, considering the available infor-

mation coming from the robot co-worker and the environment proposed. We follow a different 

approach and speed up learning by extracting more information from data that is useful for 

the autonomous capacity of the robot co-worker. Due to the fact that all the information is not 

always complete and available, and that decisions taken by the operator can be confused in 

some occasions (different decisions with the same values of the variables), FL provides a 

useful approach and a good solution for these cases. 

After giving a brief explanation about fuzziness in general context in Section 5.2, it is im-

portant to mention that for our interest in the project, fuzzy logic is widely used in machine 

control. The term "fuzzy" refers to the fact that we will follow a logic in which the handled 

concepts or events will not be expressed as the "true" or "false" but rather as "partially true", 

or X% true and (1-x) % false. Although alternatives as genetic algorithms and neural net-

works can perform just as well as in many cases fuzzy logic, fuzzy logic, apart from being 

fast and computationally noncomplex, it has the advantage that the solution to the problem 

can be casted in terms that human operators can easily understand, and their experience 

can be used in the design of the controller.  
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This is the main rationale behind the interest or need for including this algorithm in this pro-

ject; it aims at making easier to mechanize tasks that are already successfully performed by 

humans, being the exact use case that we are going to utilize. 

The whole information stored about past missions could be very valuable for future missions, 

in order to provide the robot co-worker with more autonomy by learning and reasoning about 

past decisions, and being able to apply this new learnt knowledge to current situations. 

The information to learn is not always complete and totally available; this is the main reason 

why we use FL in our approach: 

- The operator can handle more information when having to make a decision than the 

one included in our vector of information.  

If we do not have all the knowledge that the operator has, the learning process may 

not find the rationale behind these decisions and never learn properly.  

- The operator is not a deterministic decision maker.  

If we add both effects, the one that assumes lack of information in the vector, along with the 

fact that the operator may response differently, we can have different sources of error: a) the 

operator gives different labels to same inputs; b) the operator is reacting differently to same 

input because we have lack of inputs. Both effects may seem the same, but there are not. 

The first one can be tackled by improving the encoding, whereas the second one cannot be 

solved in the learning step.  

Having said that, the proposed approach consists of the following modules, as it is graphical-

ly depicted on Figure 9: 

 

Figure 9: Proposed approach for learning 

 

The three modules will be explained in detail in Sections 6.4.2.1, 6.4.2.2 and 6.4.2.3, but the 

general operation is the following:  

1) Environment simulator tool: simulates the environment and solution vectors with the 

feedback of the operator included. This module is implemented in order to run the al-

gorithm with some information included, as it is important to initialize the algorithms 

with some past information in order to start learning from those situations. The algo-

rithms needs some inputs to start working properly and it is not viable to let the CRF 

capturing this information. This module generates a set of real life situations taken 

from the laboratory in SINTEF.   
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2) The supervised learning algorithm is a classical approach in which labeled data is in-

troduced in a training phase and the challenge gravitates on tuning the algorithm so 

as to predict the labels of new vectors given to the algorithm.  

3) Fuzzy logic reasoning: this step is a key aspect for the reasoning approach. As it has 

been explained, not total knowledge of neither the environment nor a deterministic 

decision making label (operator) is included in this use case. For that reason, even if 

the supervised learning algorithm provides a solution for the input, this information 

has to be reasoned with a fuzzy approach that takes into account previous knowledge 

in the database in order to determine how reliable (in terms of percentage) a certain 

decision is.  

Regarding the application and detailed information of the learning algorithm, Section 6.4.2 

explains the definition and use case selected and final information will be provided in D26.40 

(M33). 
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6 A real scenario 
 

The oil and gas industry will continue to boom in the coming few decades. The oil and gas 

demand will grow rapidly in the next two decades. The intensifying need to obtain oil and gas 

from more hostile, hard-to-reach environments will increase the operation cost rapidly in the 

coming future. Hence, the oil and gas industry keeps looking for lower-cost solutions. To be 

competitive and to improve their profit margins, oil & gas companies are committed to cost 

reduction. 

They also look for ways to minimize employee costs and improve manufacturing efficiencies 

and quality besides seeking lower-cost suppliers and less-expensive raw materials. Because 

of the rising cost of employee salary and benefits like health care, the cost reduction effort in 

oil & gas companies is offset. Also high employee turnover adds the costs of retraining. 

Therefore, the oil and gas companies are looking for new technologies to reduce the labor 

cost. In addition, safety is a big concern in the oil and gas production. Using robotics in in-

spection, maintenance and repair could greatly improve the safety and efficiency. As this 

market trend persists, oil & gas companies have a window of opportunity to maximize effi-

ciency and productivity to moderate the petroleum market. 

One solution to both the need for efficiency and maximum production and the capabilities 

required to further exploration is to implement robotics and automation in offshore oil & gas 

environments. Because the offshore oil & gas processes require advanced technologies, off-

shore environments will deploy the safest, most secure and consistent operations by utilizing 

industrial robotics and automation, and the latest software and mechanical devices. 

The use cases selected simulate a petrol platform in which the cost efficiency, along with the 

security, are the main aspects considered. Both objectives can be improved with algorithms 

that increase the level of autonomous operation in the robot, without wrestling control from 

the operators.  

After analyzing all the robots included in the project, the final decision was taken analyzing 

the features that will condition the definition and implementation of the reasoning and learn-

ing algorithms. As it is more detailed in D26.11, the most influential feature for this task is the 

collaborative environment. For that reason, this vital aspect has conditioned the selection of 

the robot. The selected scenario operates with one single robot making task planning and 

learning more suitable for the application. 

The second vital aspect in this process is the operator; as the learning module will take valu-

able data from the information that the operator provides. Also related with the operator and 

its role in the use cases, this scenario is shared with humans, but not with close encounters 

with them. That being so, the algorithms can be trained and tested without causing any harm 

or inconveniences to people working around.  

And finally, the robot co-worker should be as autonomous as possible, being capable of safe 

navigation in offshore environments, which enables the robot to autonomously record sensor 

data at key locations or continuously monitor sensor data along a predetermined path 

Thus, the main ideas behind this selection are the following:  

- Non collaborative environment (by means of collaboration between robots, not human 

robot) 
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- Control from an operator provided. 

- Risk limited environment. 

- Autonomous issue. 

From another point of view, as it will be described in next sections, the combination of a vary-

ing environment, with a predefined path or inspection pointôs location, gives birth to a semi-

structured environment and application, but not so chaotic that it cannot be manageable. 

Therefore, two different use cases have been developed: 

- One for Planning and replanning purposes (see Section 6.4.1) 

- One for Learning purposes (see Section 6.4.2) 

The following sections describe the use cases and storylines that will be implemented in the 

real use cases selected for testing the planning, replanning, and reasoning and adaptation 

algorithms of WP26. A thoughtful description of the architecture, requirements and capabili-

ties of both the robot WP41 co-worker and the SINTEF laboratory utilized for the use cases 

has been provided in the D26.11, D41.10 and D41.20.  

6.1 The robot co-worker 
 

The robot co-worker will have to operate at various levels of automation: fully automatic, 

semi-automatic and manual (tele-operated). Fully automatic operations require no human 

intervention. There will be various tasks using semi-automatic operations, which will require 

varying degrees of human interaction when triggers arise during the inspection. When some 

of these triggers require the total human intervention, then the control is taken in a tele-

operated way by the operator.  

In case there is an emergency situation in the plant, the robot will behave as a "first respond-

er". It has to be able to reach as soon as possible the origin of the alarm, and help the opera-

tor assessing the situation. 

Concretely, among all the capabilities that the CRF has, the ones that will be tested in these 

use cases are the following:  

- Loudspeaker for noise and voice messages for communicating with humans.  

- Obstacle avoidance is made by frontal cameras. 
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Figure 10: The co-worker robot 

 

6.2 The environment 
 

One of the most important aspects of the use cases is the environment. As it has been es-

tablished in previous section, a key aspect of the work done in this WP is closely related with 

the environment and its variations, which are closely related with the level of uncertainty of 

the systems. The uncertainty of the scenario comes from different triggers, such as adverse 

weather conditions, obstacles coming in the way, abnormal measurements in the sensor or 

even communication failures. For that reason, in order to propose an adequate environment 

for the use cases, some parts of the scenario will remain fixed, while others will vary or han-

dle different levels of uncertainty. The environment part more changes and will be continu-

ously having changes, as it is described in the following subsections.   

6.2.1 Weather conditions 

 

There are several extreme environments in which the robot co-worker has to carry out in-

spection tasks: The deep waters of the Gulf of Mexico, the frigid regions of Russia, and the 

hot, dusty, undeveloped deserts of the Middle East are merely some geographic challenges 

facing todayôs oil and gas exploration and production industry. The work conditions on off-

shore installations are the first thing to look at when analyzing the environments. The most 

important ones are as follows: 

¶ Atmosphere: the atmospheric conditions on offshore platforms are quite unfriendly. 

Due to the substances used and generated during the processing of hydrocarbon re-

sources, the following three types of gases can occur separately and combined: ex-

plosive, toxic and corrosive. 

¶ Unsheltered maritime environment: except for the living quarters and a few technical 

rooms offshore platforms are partially sheltered and unsheltered. This means there is 

no sufficient protection against saltwater spray and direct sun light, which is also re-

flected from the sea surface. 
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¶ Heavy weather: wind with high speed and squalls, rain, hail and snow. All these 

weather conditions occur more often and more intense offshore than onshore. 

¶ Extreme ambient temperature: depending on the region the platform is located there 

can be extreme high and low temperatures. Humidity is also ranging from lower val-

ues up to condensing. 

In R5-COP, we have established some weather conditions that make the use cases pro-

posed more realistic: on the one hand, we have defined a threshold for severe weather con-

ditions and visibility. In the last case, despite the navigation module helps the robot co-

worker to find the equipment and the inspection points, bad visibility might affect the camera 

when it is necessary that the CRF takes a picture. On the other hand, we have defined a set 

of conditions (reading from a forecast) such as raining, snow, wind, and other relevant at-

mospheric issues. 

6.2.2 Weather data preparation 

 

Weather predictions are generally complex and intermittent. As the robot co-worker planning 

depends on the quality and availability of data, it has to be checked and outliers discarded or 

processed (we have to be sure that if an alert of storm within 1 hour is received, that value is 

correct). Moreover, in many meteorological data intermittency of data is observed from vari-

ous sources and in certain situations, the data is either missing or filled in using interpolation. 

Further, there are also sources of data that are only recorded on the sunshine hours. In the 

current task, the data containing outliers from the data have been eliminated, so the dataset 

may not be complete.  

For evaluating the feasibility of introducing weather information in the algorithm, the first ap-

proach has been to analyze different forecasts, the availability, difficulty of acquiring data, 

quality of the data, among others. The source selected takes information from The Norwe-

gian Meteorological Instituteôs meteorological forecast API. In order to validate the feasibility, 

500 days have been downloaded and evaluated.  

This, the triggers and learning algorithm will utilize data obtained for a period of the last 500 

days. Usually, the accuracy is improved using an improved data set, this will be taken up dur-

ing the validation phase. The first steps of analyzing the quality of the source and availability 

of data in Trondheim show that:  

- Summary: 14% of the times not available. 

- GSR data is recorded with an error of +/- 2.5% 

- Temperature max and min are not available for 1.6% 

- Cloud cover has been reported to have an error of 10.21% 

- Dew point and precipitation data are not available most of the time. 

- No dust cover data was used in our work. 

More values as weather alerts, storms and diverse events are being further analyzed (shown 

in the Annex), but results are not still conclusive. Taken from 

https://developer.forecast.io/docs/v2, the Forecast API lets you query for most locations on 

the globe, and returns: 

https://developer.forecast.io/docs/v2
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- Current conditions 

- Minute-by-minute forecasts up to 1 hour (where available) 

- Hour-by-hour forecasts up to 48 hours 

- Day-by-day forecasts up to 7 days 

We have provided the fourth option, getting day-by-day forecasts. Further steps on this task 

gravitate on evaluating the quality of more data and automating the data acquisition process 

in order to store it in the database.  

Once this data is processed, the information will be labelled and translated into our own 

alerts. For example, for the algorithm the prediction of wind speed of 0-30 km/h in the follow-

ing two hours is not an interesting event. By setting thresholds, these acquired values will be 

translated into actions: in the wind speed database, we will get a flag activated when wind 

speed forecast exceeds 30km/h. The same procedure will apply to each of the meteorologi-

cal features, in order not to introduce too much information that is worthless. 

6.2.3 Process modules and equipment 

 

To generate application scenarios for mobile robots, the operations carried out on these 

types of platforms must be understood. There are scheduled and occasional operations. The 

scheduled operations are tasks planned in the daily operation schedule. The occasional op-

erations are those triggered by external influence on a more or less random basis.  

The most important scheduled operations are: 

- Inspection: gauge readings and valve and lever position readings 

- Monitoring: gas level, check for leakage, acoustic anomalies, surface condition and 

check for intruders. 

- Maintenance: gas and fire detector test, sampling, pigging, cleaning, refilling and 

pipelines. 

The most frequent occasional operations are: 

- Valve and lever operation: change pressure, change flow rate and start or stop 

equipment operation. 

- Gas leakage: identify and locate, stop dangerous operations (welding, cutting é) and 

secure area and stop leakage and monitor concentration drop. 

- Fire: identify and locate fire. 

In the case of R5-COP, we have considered a concrete plant to carry out the experiments. 

Concretely, we have defined three Process Modules (P1, P2 and P3), as shown below: 
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Figure 11: The inspection points 

Each process module has its own equipment, such as valves, tanks, gauges, etc., as de-

scribed in the table below and figure 

Equipment Description 

V Power supply 

C Pipes 

VB Ball valve 

VG Globe valve 

T Tank 

W Water tank 

 
Electrical terminal 

Table 2: Equipment 

The connection between Process Module and equipment is shown in the figure below and 

tables: 

Inspection point: P1 

Facility number Facility 

P1-1 V 

P1-2 C 

P1-3 T 

Table 3: Inspection point P1 

 

Inspection point: P2 

Facility number Facility 

P2-1 T 

P2-2 T 

P2-3 T 

P2-4 V 

P2-5 G 
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P2-6 G 

P2-7 VG 

P2-8 C 

P2-9 C 

P2-10 C 

P2-11 
 

P2-12 VB 

P2-13 W 

Table 4: Inspection point P2 

 

Inspection point: P3 

Facility number Facility 

P3-1 V 

P3-2 VB 

P3-3 
 

P3-4 G 

Tabl3 5: Inspection point P3 

 

 

Figure 12: Detailed scheme of the inspection points. 

6.3 Knowledge Database 
 

As it has been explained previously, the DB is loaded on board (the robot co-worker). The 

process of Planning and replanning is performed on the robot co-worker at the beginning of 

the mission or during it respectively. Firstly, the algorithms decide the sub-list of tasks to car-

ry out and the route to perform the inspections to make up the mission. Secondly, the mis-

sion is stored in the DB of the robot co-worker, and then everything is prepared to start in-

specting.  

The Data Model detailed below reflects the necessities for both use cases (Learning and 

Planning-rePlaning). Complete information about the Database will be provided in D26.22 

(M33) Knowledge and Database document.  

6.3.1 Data Model 

 

The DB inside the robot co-worker considers all those situations in which the robot co-worker 

should act in an autonomous way, in order not to be so dependent from the human interven-
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tion when carrying out inspections or dealing with unexpected events. The design of the Data 

Model is shown below in Figure 13. 

 

 
Figure 13: Data Model 

 

Next, we explain each table and its purposes. 

MISSION: is a sequence of tasks that the robot co-worker must carried out in a period of 

time. 

- idMission: unique identifier of the mission 

- Description: explanation of the mission 

- Plant: identifier of the plant where the mission will be performed 

- A mission is composed by several commands (actions)Ą1-M relationship 

COMMAND: specifies the actions to carry out a mission, in a high level way 

- idCommand: unique identifier of the command 

- Description: explanation of the command 

- ROS_Command: identifier of the ROS_command 

- A Command has several parametersĄ1-M relationship 

- A Command can make reference to several equipmentĄ1-M relationship 



 

R5COP_D26.30.doc © R5-COP consortium Page 33 of 58 

COMMAND PARAMETERS: the configuration of the command 

- idCommand_parameter: unique identifier of the parameter 

- Description: explanation of the parameter 

- Param JASON: the parameters in JSON format 

ROS_COMMAND: is the low level command 

- idROS_COMMAND: unique identifier of the ROS_command 

- command_type: type of the ROS_command 

- Description: explanation of the ROS_command 

- Message_type: type of the ROS_message 

MESSAGE_TYPE: type of the messages 

- idMessage: unique identifier of the message 

- Description: explanation of the message 

COMMAND_TYPE: type of the commands 

- idCommand: unique identifier of the command 

- Description: explanation of the command 

ROS_MESSAGE: is the low level message 

- idROS_message: unique identifier of the ROS_message 

- Description: explanation of the ROS_message 

- Command_type: type of the ROS_command 

- Message_type: type of the ROS_message 

TRIGGER: is the event when something abnormal occurs 

- idTrigger: unique identifier of the trigger 

- Description: explanation of the trigger 

- One trigger is composed by several ROS_messagesĄ1-M relationship 

- One trigger has its own contingency plan 

- Thresholds: those figures (rely on battery, weather, etc.) that mark when the trigger is 

launched 

CONTINGENCY_PLAN: those actions to perform when a trigger is launched 

- idContingency_plan: unique identifier of the contingency_plan 

- Description: explanation of the contingency_plan 

- Command: those commands to perform when a trigger is launched 

LEARNING: stores the whole relevant knowledge of the mission for the robot co-worker 

- idLearning: unique identifier of the learning of the mission 

- mission: the mission that this learning belongs to 
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- Those flags (situations and decisions taken in previous missions) that the robot co-

worker uses to apply learnt knowledge in future missions 

LOG: the place where the robot co-worker writes all the issues that happened during a mis-

sion: decisions, triggers launched, measurements, timestamps, etc. 

- idLog: unique identifier of the log 

- mission: the mission that this log belongs to 

- timestamp: the moment in which the issue is reported 

- *issue: the description of the events, siuation, etc. 

PLANT: the environment in which the robot co-worker performs its mission. In this case a 

petrol platform 

- idPlant: unique identifier of the plant 

- Description: explanation of the plant 

- Contingency_plan: each plant has its own contingency_plan 

- Plan_map: each plant has its own map 

- idEmergency_path: each plant has its own emergency path 

- Each plant is composed by several Process modulesĄN-M relationship 

- Each plant has several interest points 

PROCESS_MODULE: the group of equipment (composed by several equipment) from which 

the robot co-worker will have to take measures 

- idProcess_module: unique identifier of the process module 

- Description: explanation of the process module 

INTEREST POINTS: those points that mark the situation of the equipment or others relevant 

points 

- idInterest_point: unique identifier of the interest point 

- Description: explanation of the interest point 

- KML: the file that maps the name of the point and its place in the plant 

- Equipment: whether the interest point is an equipment 

EQUIPMENT: the facility from which the robot co-worker will have to take measures 

- idEquipment: unique identifier of the equipment 

- Description: explanation of the equipment 

- Inspection_command: each equipment has its own inspection commands 

 

DEPENDENCIES: an equipment may have dependencies with other equipment (even in dif-

ferent process modules) when the robot co-worker is inspecting a process module 

- idEquipment: unique identifier of the equipment that have dependencies with others 

- id_Dependent_Equipment: unique identifier of the dependent equipment 
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When collision avoidance is needed, the technology of UTC provides the robot co-worker 

with 2 parameters:  

- Time-To-Collision (TTC - time to collision) and Time-Gap (TG - time lag). Time-to-

Collision is the time in which the two vehicles will collide if the speeds are kept con-

stant. 

- Time Gap is the time in which the ego vehicle arrives on the current position of the 

front vehicle if the ego speed is constant. 

In order to take into account these parameters, we find 2 options: 1) Use this action as a 

command and parameter in the data model, or 2) create one table to store these values. Our 

firts approach is to use the architecture of the ROS and the current data model to do it, but 

we will evaluate whether use the second option in the future. 

* In the case of the robot co-worker is blocked or does not know how to act, it sends a picture 

of the situation to the operator, and he can evaluate the situation and can decide whether 

tele-operate the robot co-worker or not. Under this circumstance, this picture has to be stored 

in the DB, and the best place to do it at the moment is in the LOG table. Otherwise, the DB 

model will be modified to include an additional table just for this special but useful case. TTS 

is the responsible of this technology. 
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6.4 Proposed use cases  
 

Previous sections have described the algorithms for tackling the problems in WP26 and justi-

fied the reasons behind such decisions. In this section, the use cases are presented and the 

implemented algorithms described. The first one is focused on planning and replanning and 

in order to test its performance in real situation, the general algorithm implemented for multi-

ple robot optimizations has been adapted to a single robot scenario (WP41-UC-3 Co-

worker). Hence, this section is divided into two parts in order to reflect all the work done (im-

plement a general algorithm in simulated environment and adapting it to real use case with 

single robot). So the first section 6.4.1.1 is a simulated scenario demo in which multiple ro-

bots accomplish missions and trace optimal routes under cost and time restrictions; and the 

second (described in Section 6.4.1.2) is a single real-based use case implemented in SIN-

TEF for planning. In order to allow realistic conditions of the real use case occur, some trig-

gers have been included so as to 1) make planning necessary; 2) more complex scenario 

and; 3) force replanning, as detailed in Section 6.4.1.3. Short summary of replanning is given 

in Section 6.4.1.4, as the complete information related to replanning will be thoughtfully de-

tailed in D26.40 (M33).  

The second use case is explained in Section 6.4.2, in which a simulated environment is pre-

sented in order to enhance the potential of the proposed reasoning algorithms in a more 

complex scenario. Likewise, learning use case is being implemented and as replanning use 

case, the last version and results of the module will be included in final version of this deliv-

erable, D26.40 (M33). 

6.4.1 Use case 1: Planning and replanning 

 

The proposed algorithm for the mission planning starts with a list of tasks, assigns them to a 

set of robots and establishes the optimal route for tackling them. Use case 1 will firstly detail 

the algorithms implemented for this general situation (that is simulated in a demo environ-

ment) and later the adaptations that have been required in the algorithms in order to be really 

tested in SINTEF. The modifications of the algorithms are driven by the limitation of the sce-

nario, in which a single robot is available. Thus, next sections will explain in detail the imple-

mented algorithms for a multi-robot approach and the adaptation required for a real tested 

use case with a single robot.  

6.4.1.1 Multi-robot approach 

 

As previously introduced, the approach is composed by two algorithms. In the multi robot ap-

proach a general selector algorithm is implemented in which multiple robots are considered. 

For each robot a list of tasks is calculated and later, the optimal routes for each robot are 

computed. Figure 14 shows how the input provided is a set of points, the selector algorithm 

determines which of them are assigned to which robot (and which are not included). Later, 

the router establishes the routes in parallel for each of them.  
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Figure 14: General scheme of multi-robot approach algorithms 

 

To sum up the Multi-robot approach operation:  

1) The operator opens the interface and loads a certain pre-established mission, then 

the inspection points recommended are loaded. In that moment the operator can in-

clude or remove the points at its whim. When all the points are loaded, the algorithm 

starts.  

2) The output expected for the first algorithm, the selector, comprises a subset of points 

that meets the constraints of the real state of the environment and also the ones in-

cluded by the operator.  

3) The output of the selector is provided as input to the router algorithm. 

 

6.4.1.1.1 Selector algorithm: Random Keys based Multi-objective Harmony Search algo-
rithm (RK-MoHS).  

 

As previously mentioned, HS is a population-based algorithm; it hence maintains a set of so-

lutions in the so-called Harmony Memory (HM). In this multi objective approach, an estima-

tion of the optimal solution is achieved at every iteration by applying a set of optimization pa-

rameters to the HM, which produces a new harmony vector ever time.  The figure above il-

lustrates the flow diagram of the RK-MoHS algorithm, which can be summarized in four steps 

shown in Figure 15: 
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Figure 15: General scheme of the proposed RK-MoHS. 

  

1) Initialization of the HM with RK encoded solution vectors. 

The harmony memory is randomly initialized with 50 vectors that are encoded as ex-

plained in Section 4.2.1.3. In order to not creating invalid solutions, it is checked that 

the robot-task assignation is feasible, i.e. the database stores the list of tasks that 

each robot can accomplish, so for each task an available robot is selected.  

An example of solution with 10 tasks and 3 robots is the following:  

Task1|Task2|..........| 

  2.34 | 4.98 | 10.32 | 10.21 | 2.89 | 2.56 | 4.87 | 4.11 | 10.54 | 10. 15 

That is interpreted as Č Robot 2 perfoming tasks T1, T6 and T5 (in such order). 

         Robot 4 performing tasks T8, T7 and T2.  

         Robot 10 performing tasks T10, T4, T3, T4 and T9. 

It is important to remark that each solution can have different number of robots.  

2) Improvisation of a new harmony.  

The improvisation process comprises two operators tailored for this application.  

¶ HMCR: it is applied to each note of the encoded solution and it assigns the 

task to which the operator is being applied, to the actual robot of other solution 

randomly chosen form the Harmony Memory in the same position, as it is 

graphically depicted in the following Figure 16:  
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Figure 16: HMCR example for the first harmony in the HM. 

 

¶ RSR: introduces subtle adjustments to the solutions by modifying randomly 

the assignment of a certain task to a robot. It selects a task and assigns it to a 

randomly chosen robot. All the robots can be included in this random selec-

tion, and an empty robot can be considered, i.e. if task 3 is assigned to robot 

2, it could happen that now it is assigned to a robot that was not included in 

the solution and lead to a new solution with an additional robot. On the oppo-

site, if the ñnullò robot is selected, in the new solution, such task will not be ex-

ecuted. This parameter alters the number of tasks and robots in the solution.   

 

3) Inclusion of the newly generated harmony in the HM provided that its fitness im-

proves the worst fitness values (bi-objective optimization) in the previous HM and ac-

cording to a Multi objective Pareto front ordination.  

Fitness calculation:  

a. Cost: each task has a different cost associated depending on which robot is as-

signed for that purpose. That being so, for implementing a certain list of tasks, the 

cost significantly variates depending on the robots selected for.   

b. Time: it is computed as the time for the mission (not taken into account the dis-

placement times), that, just like the cost calculation, each robot requires different 

time for accomplishing a certain task; and this issue is relevant in order to decide 

if the mission is feasible (in terms of battery levels, weather triggers, or time re-

strictions, among others). 

At each iteration the two metrics are computed, the dominant front calculated and the solu-

tions that comprise the front stored in the HM for the next iteration.   

4) Returning to step (2) until a termination criteria (e.g. maximum number of iterations 

or fitness stall) is satisfied. 

This parameter has been settled to 100 in the initial trials of the algorithms. 

The overall process of the proposed RK-MoHS is depicted in Figure 17: 

 
Figure 17: Scheme of the selector algorithm 

 

 






























